dailyResource

21 minute read

Published:

这篇博客介绍了一些日常收集整理资料。


常见的日常积累小技巧
  1. mac 电脑外接显示屏 对于屏幕分辨率的问题,其中较好的一个仓库软件叫做betterdisaplay,可以用来调整刷新赫兹以及分辨率,但是要注意下载符合mac的系统版本的软件; https://github.com/waydabber/BetterDisplay/releases?page=6
  2. adobe ps :https://www.cnblogs.com/FRIM/p/18130753

  3. 绘图的时候图例位置参数设置
     # 紧凑型图例
     handles, labels = plt.gca().get_legend_handles_labels()
     plt.legend(handles[:35], labels[:35], loc='upper right', 
               ncol=2, columnspacing=0.8, handletextpad=0.5)
        
     # 自动检测最佳位置
     # plt.legend(
     #     loc='best',
     #     bbox_to_anchor=(1, 0.5),  # 右侧垂直居中
     #     borderaxespad=0.5,
     #     framealpha=0.9
     # )
        
     # plt.legend(
     # loc='upper center',
     # bbox_to_anchor=(0.5, -0.15),  # 向下偏移15%
     # ncol=2,
     # frameon=True,
     # shadow=True,
     # fancybox=True
     # )
    

google colab 时刻触发脚本

function ConnectButton(){
    console.log("Connect pushed");
    document.querySelector("#top-toolbar > colab-connect-button").shadowRoot.querySelector("#connect").click()
}
setInterval(ConnectButton,60000);

2. 后台进程管理方案

  • 使用nohup持久运行 nohup python -u run_script.py > script.log 2>&1 &

  • 参数说明
    nohup:忽略挂断信号
    -u(Python参数):禁用输出缓冲
    > script.log:标准输出重定向
    2>&1:错误输出合并
    &:后台运行
    
  • 验证进程状态
    查看进程列表
    ps aux | grep "python run_script.py"
    实时监控日志
    tail -f script.log
    
  • 终止进程
    #优雅终止
    pkill -f "python run_script.py"
    #强制终止(无响应时)
    kill -9 1708
    
  • 高级管理方案(生产环境推荐) 使用systemd服务 创建服务文件: sudo nano /etc/systemd/model.service

  • 服务内容:
    [Unit]
    Description=Model Training Service
    [Service]
    User=root
    WorkingDirectory=/root/PDFormer
    ExecStart=/root/miniconda3/envs/base/bin/python run_script.py
    Restart=always
    StandardOutput=file:/var/log/model.log
    StandardError=file:/var/log/model_error.log
    [Install]
    WantedBy=multi-user.target
    
  • 启用服务:
    sudo systemctl daemon-reload
    sudo systemctl enable model
    sudo systemctl start model
    
  • 使用tmux会话管理
    安装tmux
    sudo apt install tmux -y
    创建会话
    tmux new -s model_train
    在会话中运行
    python run_script.py
    分离会话:
    Ctrl+B → D
    重连会话:
    tmux attach -t model_train
    要打开现有的tmux会话"python_session",请使用以下命令:
    tmux attach -t python_session
    

markdown

  • Markdown中常用的快捷键
    Ctrl 0 到 Ctrl 6: 普通文本、一级文本~六级文本
    Ctrl B: 加粗;加粗测试
    Ctrl I: 斜体;斜体测试
    Ctrl U: 下划线;下划线测试
    Shift Alt 5: 删除线;删除线测试
    Shift Ctrl ~: 行内代码块;行内代码块测试
    Ctrl K: 超链接,[超链接测试;欢迎点一个大大的关注!!!](《LL》 - 博客园 (cnblogs.com));还支持文章内锚点,按Ctrl 键点击此处 👉第一节
    Ctrl T: 表格,支持拖拽移动、网页端表格复制转换
    Ctrl Shift Q: 引用;
    Shift Ctrl I: 插入图片;
    Shift Ctrl M: 公式块;
    [ ]: 任务列表(可勾选的序列)注意每一个符号之间都有空格
    <sup> 内容 </sup>: 上标;上标测试
    <sub> 内容 </sub>: 下标;  下标测试  
    :smile:: 😄
    [toc]: 展示目录
    Ctrl l: 选中一行
    Ctrl d: 选中内容/单词
    Ctrl home: 跳转到文章开头
    Ctrl end: 跳转到文章结尾
    Ctrl f: 搜索
    Ctrl h: 替换
  • 美剧 Home Watch TV Show Hacks - Season 1 - Episode 1
  • 书籍
    http://38.147.170.240:5959/c1/baidupan/222222/%E5%85%B6%E5%AE%83/EPUB
    本站网址
    http://103.74.192.62:1234
    http://103.74.192.62
    主站http://www.https.ng
    http://38.147.170.240 http://38.147.170.240:5959
    http://45.145.228.151
    http://45.145.228.171
    http://193.134.211.102:1234 http://193.134.211.108:1234
    前面不要加httpS,是http
    

    traffic 学习 This list can be considered outdated. For a more up-to-date list, check: https://github.com/lixus7/Time-Series-Works-Conferences

Traffic Prediction

Traffic prediction is the task of predicting future traffic measurements (e.g. volume, speed, etc.) in a road network (graph), using historical data (timeseries).

Things are usually better defined through exclusions, so here are similar things that I do not include:

  • NYC taxi and bike (and other similar datsets, like uber), are not included, because they tend to be represented as a grid, not a graph.

  • Predicting human mobility, either indoors, or through checking-in in Point of Interest (POI), or through a transport network.

  • Predicting trajectory.

  • Predicting the movement of individual cars through sensors for the purpose of self-driving car.

  • Traffic data imputations.

  • Traffic anomaly detections.

The papers are haphazardly selected.

Summary

A tabular summary of paper and publically available datasets. The paper is reverse chronologically sorted. NO GUARANTEE is made that this table is complete or accurate (please raise an issue if you spot any error).

papervenuepublished date# other datsetsMETR-LAPeMS-BAYPeMS-D7(M)PeMS-D7(L)PeMS-04PeMS-08LOOPSZ-taxiLos-loopPeMS-03PeMS-07PeMS-I-405PeMS-04(S)TOTAL open
  TOTAL 38286333322111195
STwavaICDE2023 11  11       4
G-SWaNIoTDI9 May 23 11  11       4
SCPTArXiv9 May 231111          4
MP-WaveNetArXiv9 May 2311            2
GTSICLR4 May 21111           2
FASTGNNTII29 Jan 21   1          1
HetGATJAIHC23 Jan 21 11           2
GST-GATIEEE Access6 Jan 21 11           2
CLGRNarXiv4 Jan 2131            1
DKFNSIGSPATIAL3 Nov 20 1     1      2
STGAMCISP-BMEI17 Oct 20 11           2
ARNNNat. Commun11 Sept 20 1            1
ST-TrafficNetELECGJ9 Sept 20 11           2
M2J. AdHoc1 Sept 20 11           2
H-STGCNKDD23 Aug 20              0
SGMNJ. TRC20 Aug 20 11           2
GDRNNNTU16 Aug 20 1          1 2
ISTD-GCNarXiv10 Aug 20 11           2
GTSUCONN3 Aug 20 11           2
FC-GAGAarXiv30 Jul 20 11           2
STGATIEEE Access22 Jul 20 11           2
STNNT-ITS16 Jul 20              0
AGCRNarXiv6 Jul 20     11       2
GWNN-LSTMJ. Phys. Conf. Ser.20 Jun 20 1            1
A3T-GCNarXiv20 Jun 20        11    2
TSE-SCTrans-GIS1 Jun 20 11           2
MTGNNarXiv24 May 20 11           2
ST-MetaNet+TKDE19 May 20 11           2
STGNNWWW20 Apr 20 11           2
STSeq2SeqarXiv6 Apr 20 11           2
DSTGNNarXiv12 Mar 20 1            1
RSTAGIoT-J19 Feb 20 11           2
GMANAAAI7 Feb 20  1           1
MRA-BGCNAAAI7 Feb 20 11           2
STSGCNAAAI7 Feb 20     11   11  4
SLCNNAAAI7 Feb 20 111          3
DDP-GCNarXiv7 Feb 20              0
R-SSMICLR13 Jan 20 1            1
GWNV2arXiv11 Dec 19 11           2
DeepGLONeurIPS8 Dec 191  1          1
STGRATarXiv29 Nov 19 11           2
TGC-LSTMT-ITS28 Nov 19       1      1
DCRNN-RILTrustCom/BigDataSE31 Oct 19 11           2
L-VGAEarXiv18 Oct 19 1            1
T-GCNT-ITS22 Aug 19        11    2
GWNIJCAI10 Aug 19 11           2
ST-MetaNetKDD25 Jul 19 1            1
MRes-RGNN-GAAAI17 Jul 19 11           2
CDSAarXiv23 May 19 1            1
STDGIICLR12 Apr 19 1            1
ST-UNetarXiv13 Mar 19 1 11         3
3D-TGCNarXiv3 Mar 19  111         3
ASTGCNAAAI27 Jan 19     11       2
PSNT-ITS17 Aug 18             10
GaANUAI6 Aug 1821            1
Seq2Seq HybridKDD19 Jul 18              0
STGCNIJCAI13 Jul 18   11         2
DCRNNICLR30 Apr 18 11           2
SBU-LSTMUrbComp14 Aug 17       1      1
GRUYAC5 Jan 17  1           1

Performance

METR-LA MAE@60 mins

PeMS-BAY MAE@60 mins

NOTES: The experimental setttings may vary. But the common setting is:

  • Observation window = 12 timesteps

  • Prediction horizon = 1 timesteps

  • Prediction window = 12 timesteps

  • Metrics = MAE, RMSE, MAPE

  • Train, validation, and test splits = 7/1/2 OR 6/2/2

However, there are many caveats:

  • Some use different models for different prediction horizon.

  • Some use different batch size when testing previous models, as they increase the observation and prediction windows from previous studies, and have difficulties fitting it on GPU using the same batch size.

  • Regarding adjacency matrix, some derive it using Gaussian RBF from the coordinates, some use the actual connectivity, some simply learn it, and some use combinations.

  • Some might also add more context, such as time of day, or day of the week, or weather.

  • DeepGLO in particular, since it is treating it as a multi-channel timeseries without the spatial information, use rolling validation,

  • Many different treatment of missing datasets, from exclusion to imputations.

Dataset

Publically available datasets and where to find them.

Baidu, code: ‘umqd’

  • RMTMC - MnDOT https://www.d.umn.edu/~tkwon/TMCdata/TMCarchive.html The data in this archive are continuously collected by the Regional Trasportation Management Center (RTMC), a division of Minesotta Deaprtment of Transport (MnDOT) USA.

  • OpenITS http://www.openits.cn/openData/index.jhtml

  • FHWA https://www.fhwa.dot.gov/policyinformation/tables/tmasdata/

The following datasets are not publically available:

  • INRIX https://pdfs.semanticscholar.org/4b9c/9389719caff7409d9f9cee8628aef4e38b3b.pdf

  • Beijing

    • BJER4

    • BJF

    • BRF

    • BRF-L

    • W3-715

    • E5-2907

    • NE-BJ https://github.com/tsinghua-fib-lab/Traffic-Benchmark

  • Xiamen https://ieeexplore.ieee.org/document/8029849

Also relevant:

Libraries

Paper

The papers are sorted alphabetically based on model name. The citations are based on Google scholar citation.

You can find the bibtex in traffic_prediction.bib (not complete yet)

modelcitationsvenuepublished datepapercodes
3D-TGCN12arXiv3 Mar 193D Graph Convolutional Networks with Temporal Graphs: A Spatial Information Free Framework For Traffic Forecasting
AGCRN3arXiv6 Jul 20Adaptive Graph Convolutional Recurrent Network for Traffic ForecastingPyTorch
ARNN0Nat. Commun11 Sep 20Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
ASTGCN63AAAI27 Jan 19Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow ForecastingPytorch MXNet
CDSA2arXiv23 May 19CDSA: Cross-Dimensional Self-Attention for Multivariate, Geo-tagged Time Series Imputation
CLGRN0arXiv4 Jan 21Conditional Local Filters with Explainers for Spatio-Temporal Forecasting
DCRNN427ICLR30 Apr 18DIFFUSION CONVOLUTIONAL RECURRENT NEURAL NETWORK: DATA-DRIVEN TRAFFIC FORECASTINGtf PyTorch
DCRNN-RIL2TrustCom/BigDataSE31 Oct 19Diffusion Convolutional Recurrent Neural Network with Rank Influence Learning for Traffic Forecasting
DDP-GCN1arXiv7 Feb 20DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting
DeepGLO22NeurIPS8 Dec 19Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting
DGCRN0ArXiv30 Apr 21Spatiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic Flow ForecastingPyTorch
DKFN0SIGSPATIAL3 Nov 20Graph Convolutional Networks with Kalman Filtering for Traffic PredictionPyTorch
DSTGNN0arXiv12 Mar 20Dynamic Spatiotemporal Graph Neural Network with Tensor Network
FASTGNN0TII29 Jan 21FASTGNN: A Topological Information Protected Federated Learning Approach For Traffic Speed Forecasting
FC-GAGA0arXiv30 Jul 20FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting
FreqST2ICDM17 Nov 21FreqST: Exploiting Frequency Information in Spatiotemporal Modeling for Traffic Prediction
GaAN126UAI6 Aug 18GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal GraphsMXNet
GDRNN0NTU16 Aug 20Deep learning approaches for traffic prediction
GMAN20AAAI7 Feb 20GMAN: A Graph Multi-Attention Network for Traffic Predictiontf
GRU308YAC5 Jan 17Using LSTM and GRU neural network methods for traffic flow predictionKeras
GST-GAT0IEEE Access6 Jan 21Modeling Global Spatial–Temporal Graph Attention Network for Traffic Prediction 
G-SWaN0IoTDI9 May 23Because Every Sensor Is Unique, so Is Every Pair: Handling Dynamicity in Traffic ForecastingPyTorch
GTS0UCONN3 Aug 20End-to-End Structure-Aware Convolutional Networks on Graphs
GTS0ICLR4 May 21Discrete Graph Structure Learning for Forecasting Multiple Time SeriesPyTorch
GWN46IJCAI10 Aug 19Graph WaveNet for Deep Spatial-Temporal Graph ModelingPyTorch
GWNN-LSTM0J. Phys. Conf. Ser.20 Jun 20Graph Wavelet Long Short-Term Memory Neural Network: A Novel Spatial-Temporal Network for Traffic Prediction.
GWNV20arXiv11 Dec 19Incrementally Improving Graph WaveNet Performance on Traffic PredictionPyTorch
H-STGCN0KDD23 Aug 20Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data
HetGAT0JAIHC23 Jan 21HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction
ISTD-GCN0arXiv10 Aug 20ISTD-GCN: Iterative Spatial-Temporal Diffusion Graph Convolutional Network for Traffic Speed Forecasting
L-VGAE0arXiv18 Oct 19Decoupling feature propagation from the design of graph auto-encoders
LSTM39TENCON22 Nov 16Traffic flow prediction with Long Short-Term Memory Networks (LSTMs)
M21J. AdHoc1 Sep 20A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model
MP-WaveNet0ArXiv9 May 23Message Passing Neural Networks for Traffic Forecasting
MRA-BGCN7AAAI7 Feb 20Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting
MRes-RGNN-G20AAAI17 Jul 19Gated Residual Recurrent Graph Neural Networks for Traffic Prediction
MTGNN7arXiv24 May 20Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
PSN4T-ITS17 Aug 18Pattern Sensitive Prediction of Traffic Flow Based on Generative Adversarial Framework
R-SSM0ICLR13 Jan 20Relational State-Space Model for Stochastic Multi-Object Systems
RSTAG3IoT-J19 Feb 20Reinforced Spatiotemporal Attentive Graph Neural Networks for Traffic Forecasting
SAE1626T-ITS9 Sep 14Traffic flow prediction with big data: a deep learning approachKeras
SBU-LSTM157UrbComp14 Aug 17Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction
SCPT0ArXiv9 May 23Traffic Forecasting on New Roads Unseen in the Training Data Using Spatial Contrastive Pre-Training
Seq2Seq Hybrid48KDD19 Jul 18Deep Sequence Learning with Auxiliary Information for Traffic Predictiontf
SGMN1J. TRC20 Aug 20Graph Markov network for traffic forecasting with missing data
SLCNN1AAAI7 Feb 20Spatio-Temporal Graph Structure Learning for Traffic Forecasting
ST-MetaNet39KDD25 Jul 19Urban traffic prediction from spatio-temporal data using deep meta learningMXNet
ST-MetaNet+0TKDE19 May 20Spatio-Temporal Meta Learning for Urban Traffic Prediction
ST-TrafficNet2ELECGJ9 Sep 20ST-TrafficNet: A Spatial-Temporal Deep Learning Network for Traffic Forecasting
ST-UNet11arXiv13 Mar 19ST-UNet: A Spatio-Temporal U-Network for Graph-structured Time Series Modeling
STDGI3ICLR12 Apr 19Spatio-Temporal Deep Graph Infomax
STGAT0IEEE Access22 Jul 20STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow Forecasting
STGAT0IEEE Access22 Jul 20STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow Forecasting
STGCN322IJCAI13 Jul 18Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecastingtf PyTorch MXNet
STGNN4WWW20 Apr 20Traffic Flow Prediction via Spatial Temporal Graph Neural Network
STGRAT6arXiv29 Nov 19STGRAT: A Spatio-Temporal Graph Attention Network for Traffic Forecasting
STNN0T-ITS16 Jul 20STNN: A Spatio-Temporal Neural Network for Traffic Predictions
STSeq2Seq0arXiv6 Apr 20Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep Learning Approach Considering Dynamic Non-Local Spatial Correlation and Non-Stationary Temporal Dependency
STGAM1CISP-BMEI17 Oct 20Spatial-Temporal Graph Attention Model on Traffic Forecasting
STSGCN5AAAI7 Feb 20Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data ForecastingMXNet
TGC-LSTM95T-ITS28 Nov 19Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
TSE-SC0Trans-GIS1 Jun 20Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting
TSSRGCN4ICDM17 Nov 21TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network for Traffic Flow Forecasting
 0arXiv15 Jul 20On the Inclusion of Spatial Information for Spatio-Temporal Neural NetworksPyTorch
 96NeuCom27 Nov 18LSTM-based traffic flow prediction with missing data

Things that would be in the table above if I have more time:

Other works

Other works that is not based on a static-spatial-graph of timeseries:

Other lists:

Acknowledgement